BASICS OF FIRCURY

SEMINAR: Future challenges and trends in HCI - Physical Computing

MADHURIMA VARUGHESE

AGENDA

- Components of Electrical Circuits
- Conclusion

Transduction

Madhurima Varughese SEMINAR: Physical Computing 23-May-2014

INTRODUCTION

- **4** Transduction
 - → Conversion of one form of energy into another.

BASICS OF ELECTRICITY

Glossary of Terms, Ohm's law, Flow of Electricity

ELECTRICITY BASICS — GLOSSARY

- **♣** Power, Ground & Conductor
- **4** Circuit
- **♣** Voltage, Current & Resistance
- **+**DC & AC
- **♣**Short circuit

♣ Electrical power/ Wattage

ELECTRICITY BASICS — VOLT, OHM, AMP

References:[4]

ELECTRICITY BASICS — OHM'S LAW

4

V = I * R,

where

V = Voltage expressed in volts,

I = Current expressed in amperes

R = Resistance expressed in Ohms

ELECTRICITY BASICS — FLOW OF ELECTRICITY

References:[2]

ELECTRICITY BASICS — FLOW OF ELECTRICITY

Properties of Electrical Energy:

- ♣ Electricity always favour the path of least resistance to ground
- **♣** All the electrical energy in a circuit must be used.

Types of Connection:

- Series connection
- Parallel connection

References:[3]

ELECTRICITY BASICS — FLOW OF ELECTRICITY

References:[3]

Switches, Resistors, Diodes and LEDs, Transistors and Relays, Multimeter

SWITCHES

♣ Pass or interrupt flow of electricity.

Schematic Symbol:

- ♣ Rated by: Maximum voltage and current conducted
- **4** Types:
 - ♣ Normally Open(N.O) & Normally Closed(N.C)
 - Momentary or Toggle

RESISTORS

4 Reduce current flow within circuits.

Convert electrical energy to heat.

4 Schematic Symbol:

♣ Rated in: Ohms

***VARIABLE RESISTORS:**

♣ Schematic Symbol:

♣ Schematic Symbol:

↓ E.g.: Thermistors, Photocells, Force-sensitive resistors, Potentiometer etc.

CAPACITORS

♣ When electricity is flows into a capacitor, it stores up the charge. When the current is removed, the capacitor releases its charge until it's got no charge left.

♣ Rated by: Capacitance measured in Farads(F or mF or μF)

DIODES & LED'S

- **♣** Only allows electricity to flow in one direction and not the other.
- ♣ cathode (–), and the anode (+)
- **♣** Schematic Symbol: →
- **♣** Types: General-purpose, LED

♣ Schematic Symbol:

TRANSISTORS & RELAYS

♣ Switching devices(small switches that activate larger switches).

TRANSISTOR:

Schematic Symbol:

RELAY

4 Schematic Symbol:

MULTIMETER

- ♣ Device used to test various electrical properties of a component or a circuit.
- **♣** Debugging Tool

Madhurima Varughese SEMINAR: Physical Computing 23-May-2014

REFERENCES

- ↓[1] Dan O'Sullivan, Tom Igoe (2004)

 Physical Computing: Sensing and Controlling the Physical World with Computers,

 Thomson
- **↓** [2] Erik Brunvand. 2013. Lights! speed! action!: fundamentals of physical computing for programmers.

Websites:

- 4[3] http://www.qldscienceteachers.com/junior-science/physics/electricity
- [4] http://www.reddit.com/r/explainlikeimfive/comments/lqrdc9/eli5how_do_digital
 _devices_know_how_much_energy/